Connect with us

Software

Cytoscape.js : A graph library for network visualization and analysis

Dr. Muniba Faiza

Published

on

Network visualization has become a strong need for studying the molecular interactions whether they are the protein or gene interactions. Network information is utilized in many contexts, from cellular functions to the identification of gene functions. Thus, an ever-increasing volume of the research has used network visualization to gain deep insight into the molecular interactions that influence our body functions.

Since the days of Flash have gone by, alternative technologies are rising. The interactive presentation used to be a dominion of Flash, It is no more same.

It is easier for the researchers to study the molecular interactions in-silico, so it is equally important to visualize the network (linkage among the molecules) over modern portable devices. Many web platforms have been developed using standard technologies such as HTML, CSS, JavaScript (JS) to do this.

Cytoscape.js leads the game.

Cytoscape.js is an API (Application Program Interface, i.e., it specifies how software components should interact and used to program graphical user interface), which allows the user to assimilate graphs into interaction models and web user interfaces.

Cytoscape.js is a stand-alone tool and its architecture is broadly classified into two categories:

1. Core: The core is the main entry point for the developer. Core functions allow accessing graph elements. It represents the graph, and perform various operations on the graph.

2. Collection: It is a set of graph elements. It allows to filter, traverse, perform various operations. Sometimes, it is taken as an input by some core functions.

Fig.1

Fig.1 A gene-gene interaction network visualized in Cytoscape.js

Cytoscape.js offers a different type of graphs such as directed, undirected, traditional, multigraphs and hypergraphs. The graphs can also be modified by adding or deleting the graph elements such as edges. It includes the Graph theory algorithm which enables the user to search for the shortest path in the interaction graph. The graph consists of nodes representing the unit i.e., a protein or a gene. These nodes can also be modified by removing or by selecting the interested nodes only. The graph can be saved either in PNG or JPG format.

Cytoscape.js is an open source software and is available at http://js.cytoscape.org. It is an improvisation over the Adobe Flash-based Cytoscape Web.

Cytoscape.js Demo

In this demo, you can drag individual nodes, zoom in and perform other routine activities.

References:

1.Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer and Gary D. Bader*. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics, 32(2), 2016, 309–311 doi:1093/bioinformatics/btv557

2. Lopes,C.T. et al. (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics, 26, 2347–2348.

3. 4 Network Visualisation Tools. Fusion Table, Google Fusion Table  August 20, 2014

 

Dr. Muniba is a Bioinformatician based in New Delhi, India. She has completed her PhD in Bioinformatics from South China University of Technology, Guangzhou, China. She has cutting edge knowledge of bioinformatics tools, algorithms, and drug designing. When she is not reading she is found enjoying with the family. Know more about Muniba

Advertisement
2 Comments

2 Comments

  1. karelsedlar

    July 15, 2016 at 4:41 pm

    Hi,
    I was just wondering… Is the introductory image generated in cytoscape.js? It looks more like Gephi visualization to me.

    • Tariq Abdullah

      July 27, 2016 at 11:32 pm

      Hi Karel,

      It is actually a representative image, the actual output can be seen in the demo.

      Thank you.

You must be logged in to post a comment Login

Leave a Reply

Bioinformatics Programming

Free_Energy_Landscape-MD: Python package to create Free Energy Landscape using PCA from GROMACS.

Dr. Muniba Faiza

Published

on

In molecular dynamics (MD) simulations, a free energy landscape (FEL) serves as a crucial tool for understanding the behavior of molecules and biomolecules over time. It is difficult to understand and plot a meaningful FEL and then extract the time frames at which the plot shows minima. In this article, we introduce a new Python package (Free_Energy_Landscape-MD) to generate an FEL based on principal component analysis (PCA) from MD simulation done by GROMACS [1].

(more…)

Continue Reading

Bioinformatics News

VS_Analysis: A Python package to perform post-virtual screening analysis

Dr. Muniba Faiza

Published

on

VS_Analysis: A Python package to perform post-virtual screening analysis

Virtual screening (VS) is a crucial aspect of bioinformatics. As you may already know, there are various tools available for this purpose, including both paid and freely accessible options such as Autodock Vina. Conducting virtual screening with Autodock Vina requires less effort than analyzing its results. However, the analysis process can be challenging due to the large number of output files generated. To address this, we offer a comprehensive Python package designed to automate the analysis of virtual screening results.

(more…)

Continue Reading

Bioinformatics Programming

vs_interaction_analysis.py: Python script to perform post-virtual screening analysis

Dr. Muniba Faiza

Published

on

vs_interaction_analysis.py: Python script to perform post-virtual screening analysis

Analyzing the results of virtual screening (VS) performed with Autodock Vina [1] can be challenging when done manually. In earlier instances, we supplied two scripts, namely vs_analysis.py [2,3] and vs_analysis_compounds.py [4]. This time, we have developed a new Python script to simplify the analysis of VS results.

(more…)

Continue Reading

Software

How to install Interactive Genome Viewer (IGV) & tools on Ubuntu?

Dr. Muniba Faiza

Published

on

How to install Interactive Genome Viewer (IGV) & tools on Ubuntu?

Interactive Genome Viewer (IGV) is an interactive tool to visualize genomic data [1]. In this article, we are installing IGV and tools on Ubuntu desktop.

(more…)

Continue Reading

MD Simulation

[Tutorial] Installing VIAMD on Ubuntu (Linux).

Dr. Muniba Faiza

Published

on

[Tutorial] Installing VIAMD on Ubuntu (Linux).

Visual Interactive Analysis of Molecular Dynamics (VIAMD) is a tool that allows the interactive analysis of molecular dynamics simulations [1]. In this article, we are installing it on Ubuntu (Linux).

(more…)

Continue Reading

Docking

[Tutorial] Performing docking using DockingPie plugin in PyMOL.

Dr. Muniba Faiza

Published

on

[Tutorial] Performing docking using DockingPie plugin in PyMOL.

DockingPie [1] is a PyMOL plugin to perform computational docking within PyMOL [2]. In this article, we will perform simple docking using DockingPie1.2.

(more…)

Continue Reading

Docking

How to install the DockingPie plugin on PyMOL?

Dr. Muniba Faiza

Published

on

How to install DockingPie plugin on PyMOL?

DockingPie [1] is a plugin of PyMOL [2] made to fulfill the purpose of docking within the PyMOL interface. This plugin will allow you to dock using four different algorithms, namely, Vina, RxDock, SMINA, and ADFR. It will also allow you to perform flexible docking. Though the installation procedure is the same for all OSs, in this article, we are installing this plugin on Ubuntu (Linux).

(more…)

Continue Reading

Software

Video Tutorial: Calculating binding pocket volume using PyVol plugin.

Dr. Muniba Faiza

Published

on

Calculate Binding Pocket Volume in Pymol (using PyVol plugin).

This is a video tutorial for calculating binding pocket volume using the PyVol plugin [1] in Pymol [2].

(more…)

Continue Reading

Software

How to generate topology from SMILES for MD Simulation?

Dr. Muniba Faiza

Published

on

How to generate topology from SMILES for MD Simulation?

If you need to generate the topology of molecules using their SMILES, a simple Python script is available.

(more…)

Continue Reading

Software

[Tutorial] Installing jdock on Ubuntu (Linux).

Dr. Muniba Faiza

Published

on

[Tutorial] Installing jdock on Ubuntu (Linux).

jdock is an extended version of idock [1]. It has the same features as the idock along with some bug fixes. However, the binary name and the GitHub repository names are changed. We are installing jdock on Ubuntu (Linux).

(more…)

Continue Reading

Software

How to upgrade cmake on Ubuntu (Linux)?

Dr. Muniba Faiza

Published

on

How to upgrade cmake on Ubuntu/Linux?

In bioinformatics, cmake is used to install multiple software including GROMACS, jdock, and so on. Here is a short tutorial on how to upgrade cmake on Ubuntu and get rid of the previous version. (more…)

Continue Reading

Software

How to install GMXPBSA on Ubuntu (Linux)?

Dr. Muniba Faiza

Published

on

How to install GMXPBSA on Ubuntu (Linux)?

GMXPBSA is a tool to calculate binding free energy [1]. It is compatible with Gromacs version 4.5 and later. In this article, we will install GMXPBSA version 2.1.2 on Ubuntu (Linux).

(more…)

Continue Reading

Docking

[Tutorial] Installing Pyrx on Windows.

Dr. Muniba Faiza

Published

on

[Tutorial] Installing Pyrx on Windows.

Pyrx [1] is another virtual screening software that also offers to perform docking using Autodock Vina. In this article, we will install Pyrx on Windows. (more…)

Continue Reading

MD Simulation

How to solve ‘Could NOT find CUDA: Found unsuitable version “10.1”‘ error during GROMACS installation?

Dr. Muniba Faiza

Published

on

How to solve ‘Could NOT find CUDA: Found unsuitable version “10.1”‘ error during GROMACS installation?

Compiling GROMACS [1] with GPU can be trivial. Previously, we have provided a few articles on the same. In this article, we will solve an error frequently occurring during GROMACS installation.

(more…)

Continue Reading

Software

Installing Autodock4 on MacOS.

Dr. Muniba Faiza

Published

on

Installing Autodock4 on MacOS

Previously, we installed the Autodock suite [1] on Ubuntu. Visit this article for details. Now, let’s install it on MacOS.

(more…)

Continue Reading

Docking

How to install Autodock4 on Ubuntu?

Dr. Muniba Faiza

Published

on

How to install Autodock4 on Ubuntu?

Autodock suite is used for docking small molecules [1]. Recently, Autodock-GPU [2] is developed to accelerate the docking process. Its installation is described in this article. In this tutorial, we will install Autodock 4.2.6 on Ubuntu.

(more…)

Continue Reading

Software

DS Visualizer: Uses & Applications

Dr. Muniba Faiza

Published

on

DS Visualizer: Uses & Applications

Discovery Studio (DS) Visualizer (from BIOVIA) is a visualization tool for viewing, sharing, and analyzing proteins [1]. Here are some uses and applications of DS Visualizer.

(more…)

Continue Reading

Software

Protein structure & folding information exploited from remote homologs.

Dr. Muniba Faiza

Published

on

protein structure & folding prediction using remote homologs

Remote homologs are similar protein structures that share similar functions, but there is no easily detectable sequence similarity in them. A new study has revealed that the protein folding information can be exploited from remote homologous structures. A new tool is developed to recognize such proteins and predict their structure and folding pathway. (more…)

Continue Reading

RNA-seq analysis

Pathonoia- A new tool to detect pathogens in RNA-seq data.

Dr. Muniba Faiza

Published

on

Pathonoia- A new tool to detect pathogens in RNA-seq data.

Detecting viruses and bacteria in RNA-seq data with less false positive rate is a difficult task. A new tool is introduced to detect pathogens in RNA-seq data with high precision and recall known as Pathonoia [1].

(more…)

Continue Reading

Software

AlphaFill- New algorithm to fill ligands in AlphaFold models.

Dr. Muniba Faiza

Published

on

AlphaFill- New algorithm to fill ligands in AlphaFold models.

AlphaFold is a popular artificial intelligence based protein prediction tool [1]. Though it predicts good protein structures, it lacks the capability to predict the small molecules present in the structure such as ligands. For this purpose, AlphaFill is introduced by Hekkelman et al.,[2]. (more…)

Continue Reading

LATEST ISSUE

ADVERT