Connect with us

Algorithms

Common features used to develop miRNA target prediction tools

Dr. Muniba Faiza

Published

on

As we have discussed the miRNAs, their formation, and functions (miRNA targets and their functions ) and an overview on some of the available miRNA target prediction tools (miRNAs and their Target Prediction Tools: An Overview in previous articles. In this article, I have tried to give basic information about the common features which are involved in the formation of most of the miRNA target prediction algorithms and tools.

miRNAs are the short endogenous RNAs which are ~22 nucleotides long and originate from the non-coding RNAs [1]. miRNAs are expressed from the long transcripts which are produced in viruses, plants, animals and single-celled eukaryotes [2]. miRNAs targets are the complementary sequences in mRNA, which are usually present in the 3’-UTR and inhibits the translation process or induce the target degradation to prevent the protein synthesis. Computational methods are used to identify that how miRNAs specifically target the mRNAs. There are few common features on which the miRNA target prediction tools are based. These features are used for developing an algorithm for a maximum number of the miRNA tools. These features are described below [3]:

1.Seed match

The miRNA region of the first 2 to 8 nucleotides from the 5’-end to the 3’-end is called ‘seed sequence’[4]. In most of the tools, a seed sequence with a Watson-Crick pairing between miRNA and mRNA is considered as seed match and there is no gap in a perfect seed matching[3].

The seed matching is of several kinds depending on the algorithm, but mostly used seed matching are as follows [5-7]:

  1. 6-mer: it includes perfect seed matching for six nucleotides between the miRNA seed and the mRNA.
  2. 7-mer-m8: it is a perfect seed match between 2-8 nucleotides of miRNA seed sequence.
  3. 7mer-A1: it is a perfect seed match between 2-7 nucleotides of miRNA seed sequence in addition to an A across the miRNA first nucleotide.
  4. 8-mer: It is a perfect seed match between nucleotides 2-8 of miRNA seed sequence in addition to an A across the miRNA first nucleotide.

2.Conservation

It is the reservedness of the sequence across the species. This feature analyzes the regions such as the miRNA, 3’-UTR, 5’-UTR [3]. It has been found that the seed region is more conserved than other regions [5]. A small portion of miRNA which interacts with the target mRNA has conserved pairing which compensates for the mismatched seed and known as ‘3’-Compensatory sites’ [8]. Conservation analysis helps to predict whether a predicted miRNA target is functional or not [3].

3. Free Energy

It is Gibb’s Free Energy which is calculated to predict the stability of a structure. It is calculated as the change in free energy (  delta- G). In this case, when miRNA binds to the target mRNA and results in a stable structure, then it is considered as the most likely target of that miRNA. The reactions with more negative delta-G are less reactive, therefore have more stability. The hybridization of miRNA with its target mRNA provide information about the high and low free energy regions and delta-G predicts the strength of bonding between the miRNA and its target mRNA [9].

4. Site Accessibility

Site Accessibility tells about that how easily a miRNA can locate its target mRNA and get hybridized with it. The hybridization of miRNA with its target mRNA involves two steps:

  1. miRNA binds to a short accessible region of mRNA.
  2. Once it completes binding to the target, the mRNA unfolds [10].

Hence, to find the most probable target of the miRNA, the amount of energy required to make a site accessible is evaluated.

There are few other features which are used in most of the target prediction tools algorithms, they are described below:

1. Target-site abundance: It determines the number of sites occurring in the 3’-UTR [11].

2. Local AU content: It is the concentration of A and U nucleotides which flank in the corresponding seed region [6,10].

3. GU Wobble seed match: It calculates the chances of a G pairing with a U instead of C [12].

4. 3’-Compensatory pairing: It is the pairing region (12-17 nts) in which the base pairs match with miRNA nucleotides.

5. Seed pairing stability: It is the free energy change calculated for a predicted duplex [11].

6. Position Contribution: It determines the position of a target sequence within the mRNA [13].

 

These are the common features used to develop the miRNA target prediction algorithms and tools. In my upcoming article, I will try to explain some new features which have been developed recently to predict miRNA targets more efficiently.

References:

  1. Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 004;116:281–97.
  2. Bing Liu, Jiuyong Li, and Murray J. Cairns. Identifying miRNAs, targets and functions. Briefings in Bioinformatics. page 1-19; doi:10.1093/bib/bbs075.
  3. Sarah M. Peterson, Jeffrey A. Thompson, Melanie L. Ufkin, Pradeep Sathyanarayana, Lucy Liaw, and Clare Bates Congdon. Common features of miRNA prediction tools. Frontiers in Genetics. doi : 10.3389 /fgene .2014.00023.
  4. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20. doi: 10.1016/j.cell.2004.12.035.
  5. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B.
    (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798. doi:
    1016/S0092-8674(03)01018-3
  6. Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005). Principles
    of microRNA-target recognition. PLoS Biol. 3:e85. doi: 10.1371/journal.pbio.0030085.
  7. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005).
    Combinatorial microRNA target predictions. Genet. 37, 495–500. doi:
    10.1038/ng1536.
  8. Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.
    doi: 10.1101/gr.082701.108.
  9. Yue, D., Liu, H., and Huang, Y. (2009). Survey of computational algorithms for MicroRNA target prediction. Genomics 10, 478–492. doi:
    10.2174/138920209789208219.
  10. Long, D., Lee, R., Williams, P., Chan, C. Y., Ambros, V., and Ding, Y. (2007). Potent
    effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14,
    287–294. doi: 10.1038/nsmb1226
  11. Garcia, D. M., Baek, D., Shin, C., Bell, G. W., Grimson, A., and Bartel, D. P. (2011).Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139–1146. doi:10.1038/nsmb.2115
  12. Doench, J. G., and Sharp, P. A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511. doi: 10.1101/gad.1184404
  13. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and Bartel,D.P.(2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105. doi: 10.1016/j.molcel.2007.06.017

 

How to cite this article: Faiza, M., 2016. Common features used to develop miRNA target prediction tools, 2(10):page 14-18. The article is available at http://bioinformaticsreview.com/20161028/common-features-used-to-develop-mirna-target-prediction-tools/

Dr. Muniba is a Bioinformatician based in New Delhi, India. She has completed her PhD in Bioinformatics from South China University of Technology, Guangzhou, China. She has cutting edge knowledge of bioinformatics tools, algorithms, and drug designing. When she is not reading she is found enjoying with the family. Know more about Muniba

Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Algorithms

MOCCA- A New Suite to Model cis- regulatory Elements for Motif Occurrence Combinatorics

Published

on

MOCCA- A New Suite to Model cis- regulatory Elements for Motif Occurrence Combinatorics

cis-regulatory elements are DNA sequence segments that regulate gene expression. cis-regulatory elements consist of some regions such as promoters, enhancers, and so on. These regions consist of specific sequence motifs. (more…)

Continue Reading

Algorithms

vs_Analysis.py: A Python Script to Analyze Virtual Screening Results of Autodock Vina

Dr. Muniba Faiza

Published

on

VS-Analysis: A Python Script to Analyze Virtual Screening Results of Autodock Vina

The output files obtained as a result of virtual screening (VS) using Autodock Vina may be large in number. It is difficult or quite impossible to analyze them manually. Therefore, we are providing a Python script to fetch top results (i.e., compounds showing low binding affinities). (more…)

Continue Reading

Algorithms

How to search motif pattern in FASTA sequences using Perl hash?

Dr. Muniba Faiza

Published

on

Here is a simple Perl script to search for motif patterns in a large FASTA file with multiple sequences.

(more…)

Continue Reading

Algorithms

How to read fasta sequences from a file using PHP?

Published

on

Here is a simple function in PHP to read fasta sequences from a file. (more…)

Continue Reading

Algorithms

How to read fasta sequences as hash using perl?

Published

on

This is a simple Perl script to read a multifasta file as a hash. (more…)

Continue Reading

Algorithms

BETSY: A new backward-chaining expert system for automated development of pipelines in Bioinformatics

Dr. Muniba Faiza

Published

on

Bioinformatics analyses have become long and difficult as it involves a large number of steps implemented for data processing. Bioinformatics pipelines are developed to make this process easier, which on one hand automate a specific analysis, while on the other hand, are still limited for investigative analyses requiring changes to the parameters used in the process. (more…)

Continue Reading

Algorithms

Algorithm and workflow of miRDB

Published

on

As mentioned in the previous article, Micro RNAs (miRNAs) are the short endogenous RNAs (~22 nucleotides) and originate from the non-coding RNAs [1], produced in single-celled eukaryotes, viruses, plants, and animals [2]. They play significant roles in various biological processes such as degradation of mRNA [3]. Several databases exist storing a large amount of information about miRNAs, one of such databases miRBase [4] was explained in the previous article, today we will explain the algorithm of miRDB [5,6], another database for miRNA target prediction. (more…)

Continue Reading

Algorithms

miRBase: Explained

Dr. Muniba Faiza

Published

on

Micro RNAs (miRNAs) are the short endogenous RNAs (~22 nucleotides) and originate from the non-coding RNAs [1], produced in single-celled eukaryotes, viruses, plants, and animals [2]. miRNAs are capable of controlling homeostasis [2] and play significant roles in various biological processes such as degradation of mRNA and post-translational inhibition through complementary base pairing [3].  (more…)

Continue Reading

Algorithms

Prediction of biochemical reactions catalyzed by enzymes in humans

Dr. Muniba Faiza

Published

on

There are many biological important enzymes which exist in the human body, one of them is Cytochrome P450 (CyP450) enzymes which are mostly considered in drug discovery due to their involvement in the majority (75%) of drug metabolism [1]. Therefore, various in-silico methods have been applied to predict the possible substrates of CyP 450 enzymes [2-4]. Recently, an in-silico model has been developed to predict the potential chemical reactions mediated by the enzymes present in humans including CyP450 enzymes [5]. (more…)

Continue Reading

Algorithms

A new high-level Python interface for MD simulation using GROMACS

Published

on

The roots of the molecular simulation application can be traced back to physics where it was applied to simplified hard-sphere systems [1]. This field of molecular simulation study has gained a lot of interest since then and applied to perform simulations to fold small protein at multi-microsecond scale [2-4], predict functional properties of receptors and to capture the intermediate transitions of the complex [5], and to study the movement and behavior of ligand in a binding pocket and also to predict interactions between receptors and ligands [6,7]. (more…)

Continue Reading

Algorithms

Machine learning in prediction of ageing-related genes/proteins

Dr. Muniba Faiza

Published

on

Ageing has a great impact on human health, when people’s age advance towards 80 years, approximately half of the proteins in the body get damaged through oxidation. The chemical degradations occurring in our body produce energy by the consumed food via oxidation in the presence of oxygen. (more…)

Continue Reading

Algorithms

Simulated sequence alignment software: An alternative to MSA benchmarks

Dr. Muniba Faiza

Published

on

In our previous article, we discussed different multiple sequence alignment (MSA) benchmarks to compare and assess the available MSA programs. However, since the last decade, several sequence simulation software have been introduced and are gaining more interest. In this article, we will be discussing various sequence simulating software being used as alternatives to MSA benchmarks. (more…)

Continue Reading

Algorithms

Benchmark databases for multiple sequence alignment: An overview

Dr. Muniba Faiza

Published

on

Multiple sequence alignment (MSA) is a very crucial step in most of the molecular analyses and evolutionary studies. Many MSA programs have been developed so far based on different approaches which attempt to provide optimal alignment with high accuracy. Basic algorithms employed to develop MSA programs include progressive algorithm [1], iterative-based [2], and consistency-based algorithm [3]. Some of the programs incorporate several other methods into the process of creating an optimal alignment such as M-COFFEE [4] and PCMA [5]. (more…)

Continue Reading

Algorithms

ab-initio prediction of protein structure: An introduction

Dr. Muniba Faiza

Published

on

We have heard a lot about the ab-initio term in Bioinformatics, which could be difficult to understand for newbies in the field of bioinformatics. Today, we will discuss in detail what ab-initio is and what are the applicable methods for it. (more…)

Continue Reading

Algorithms

Intrinsically disordered proteins’ predictors and databases: An overview

Published

on

Intrinsically unstructured proteins (IUPs) are the natively unfolded proteins which must be unfolded or disordered in order to perform their functions.  They are commonly referred to as intrinsically disordered proteins (IDPs) and play significant roles in regulating and signaling biological networks [1]. IDPs are also involved in the assembly of signaling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles [1]. The disordered regions in a protein can be highly conserved among the species in respect of both the composition and the sequence [2]. (more…)

Continue Reading

Algorithms

An introduction to the predictors of pathogenic point mutations

Dr. Muniba Faiza

Published

on

Single nucleotide variation is a change in a single nucleotide in a sequence irrespective of the frequency of the variation. Single nucleotide variants (SNVs) play a very important role in causing several diseases such as the tumor, cancer, etc. Many efforts have been made to identify the SNVs which were initially based on identifying non-synonymous mutations in coding regions of the genomes. (more…)

Continue Reading

Algorithms

SparkBLAST: Introduction

Dr. Muniba Faiza

Published

on

The basic local alignment search tool (BLAST) [1,2] is known for its speed and results, which is also a primary step in sequence analysis. The ever-increasing demand for processing huge amount of genomic data has led to the development of new scalable and highly efficient computational tools/algorithms. For example, MapReduce is the most widely accepted framework which supports design patterns representing general reusable solutions to some problems including biological assembly [3] and is highly efficient to handle large datasets running over hundreds to thousands of processing nodes [4]. But the implementation frameworks of MapReduce (such as Hadoop) limits its capability to process smaller data. (more…)

Continue Reading

Algorithms

Role of Information Theory, Chaos Theory, and Linear Algebra and Statistics in the development of alignment-free sequence analysis

Published

on

By

Sequence alignment is customary to not only find similar regions among a pair of sequences but also to study the structural, functional and evolutionary relationship between organisms. Many tools have been discovered to achieve the goal of alignment of a pair of sequences, separately for nucleotide sequence and amino acid sequence, BLOSSUM & PAM [1] are a few to name. (more…)

Continue Reading

Algorithms

Bioinformatics Challenges and Advances in RNA interference

Published

on

By

 

 

RNA interference is a post-transcriptional gene regulatory mechanism to down-regulate the gene expression either by mRNA degradation or by mRNA translation inhibition. The mechanism involves a small partially complementary RNA against the target gene. To perform the action, it also requires a class of dedicated proteins to process these primary RNAs into mature microRNAs. The guide sequence determines the specificity of the miRNA. Therefore, the knowledge of the guide sequence is crucial for predicting its targets and also exploiting the sequence to create a new regulatory circuit. In this short review, we will briefly discuss the role and challenges in miRNA research for unveiling the target prediction by bioinformatics and to foster our understanding and applications of RNA interference. (more…)

Continue Reading

Algorithms

Systems pharmacology and drug development

Dr. Muniba Faiza

Published

on

Systems pharmacology is an emerging area in the field of medicinal chemistry and pharmacology which utilizes systems network to understand drug action at the organ and organism level. It applies the computational and experimental systems biology approaches to pharmacology, which includes network analyzes at multiple biological organization levels facilitating the understanding of both therapeutic and adverse effects of the drugs. Nearly a decade ago, the term systems pharmacology was used to define the drug action in a specific organ system such as reproductive pharmacology [1], but to date, it has been expanded to different organ and organism levels [2]. (more…)

Continue Reading

LATEST ISSUE

ADVERT