Bioinformatics ReviewBioinformatics Review
Notification Show More
Font ResizerAa
  •  Home
  • Docking
  • MD Simulation
  • Tools
  • More Topics
    • Softwares
    • Sequence Analysis
    • Algorithms
    • Bioinformatics Programming
    • Bioinformatics Research Updates
    • Drug Discovery
    • Phylogenetics
    • Structural Bioinformatics
    • Editorials
    • Tips & Tricks
    • Bioinformatics News
    • Featured
    • Genomics
    • Bioinformatics Infographics
  • Community
    • BiR-Research Group
    • Community Q&A
    • Ask a question
    • Join Telegram Channel
    • Join Facebook Group
    • Join Reddit Group
    • Subscription Options
    • Become a Patron
    • Write for us
  • About Us
    • About BiR
    • BiR Scope
    • The Team
    • Guidelines for Research Collaboration
    • Feedback
    • Contact Us
    • Recent @ BiR
  • Subscription
  • Account
    • Visit Dashboard
    • Login
Font ResizerAa
Bioinformatics ReviewBioinformatics Review
Search
Have an existing account? Sign In
Follow US
SoftwareTools

AligNet- A New Protein-Protein Interaction Network Aligner

Dr. Muniba Faiza
Last updated: November 26, 2020 9:32 pm
Dr. Muniba Faiza
Share
2 Min Read
alignet: ppi network aligner
SHARE

Protein-protein interactions (PPIs) are essential to study to understand the molecular functions carried out by a group of proteins. Alcala et al., [1] developed a new aligner software to provide biologically relevant alignments of PPI networks.

Contents
  • How AligNet works?
    • References

AligNet is based on a parameter-free pairwise alignment algorithm [1]. It provides biologically and topologically efficient alignments. AligNet algorithm focuses on structural matching and protein function conservation. It is implemented in the R language and is freely available to download from GitHub.

How AligNet works?

  1. AligNet takes two networks as input.
  2. It recognizes all nodes and creates a cluster for every node present in the networks separately.
  3. After that, it aligns both the clusters.
  4. Calculates the local alignment and selects the best-computed alignments.
  5. Later, it selects a well-defined local alignment amongst the rest of the computed alignments.
  6. Further,  it creates a global alignment out of the selected local alignment.
  7. As a result, it provides all aligned nodes.

The developing team has tested the performance of AligNet against the other state-of-the-art tools, namely, PINALOG [2], SPINAL [3], HubAlign [4], and L-GRAAL [5]. As a result, the AligNet performed better than the other aligners.

For further reading, click here.


References

  1. Alberich, R., Alcala, A., Llabrés, M., Rosselló, F., & Valiente, G. (2019). Alignet: alignment of protein-protein interaction networks. arXiv preprint arXiv:1902.07107.
  2. Phan, H. T., & Sternberg, M. J. (2012). PINALOG: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics, 28(9), 1239-1245.
  3. Aladag˘,A.E. and Erten,C. (2013) Spinal: scalable protein interaction network alignment. Bioinformatics, 29, 917–924
  4. Hashemifar, S., & Xu, J. (2014). Hubalign: an accurate and efficient method for global alignment of protein–protein interaction networks. Bioinformatics, 30(17), i438-i444.
  5. Malod-Dognin, N., & Pržulj, N. (2015). L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics, 31(13), 2182-2189.
TAGGED:bioinformatics toolinteraction networkppiProtein-protein interaction
Share This Article
Facebook Copy Link Print
ByDr. Muniba Faiza
Follow:
Dr. Muniba is a Bioinformatician based in New Delhi, India. She has completed her PhD in Bioinformatics from South China University of Technology, Guangzhou, China. She has cutting edge knowledge of bioinformatics tools, algorithms, and drug designing. When she is not reading she is found enjoying with the family. Know more about Muniba
Leave a Comment

Leave a Reply Cancel reply

You must be logged in to post a comment.

ai tools vs traditional tools in bioinformatics
AI Tools vs Traditional Tools in Bioinformatics- Which one to select?
Algorithms Artificial Intelligence Machine Learning Software Tools
AI vs Physics in Molecular Docking
AI vs Physics in Molecular Docking: Towards Faster and More Accurate Pose Prediction
Artificial Intelligence Drug Discovery Machine Learning
10 years of Bioinformatics Review: From a Blog to a Bioinformatics Knowledge Hub!
Editorial
Starting in Bioinformatics? Do This First!
Starting in Bioinformatics? Do This First!
Tips & Tricks

You Might Also Like

smORFunction: A tool for ORfs and microproteins function prediction
Function PredictionTools

smORFunction: A Tool for ORFs and Microproteins Function Prediction

October 30, 2020
predict protein targets
DockingSoftwareTools

Predict putative protein targets for small molecules using a new tool

August 5, 2020
SoftwareSystems Biology

BioMiner & Personalized Medicine: A new perspective

December 26, 2015
DS Visualizer: Uses & Applications
SoftwareTools

DS Visualizer: Uses & Applications

April 4, 2023
Copyright 2024 IQL Technologies
  • Journal
  • Customer Support
  • Contact Us
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Cookie Policy
  • Sitemap
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?

Not a member? Sign Up