Connect with us

Systems Biology

Two Components System: Potential Drug Target in Mycobacterium tuberculosis

Published

on

The genomic complexity and unknown functions of proteins/genes in Mycobacterium tuberculosis (Mt) has triggered an in-depth study of the entire genome to explore factors responsible for influencing Mt’s behaviour at molecular level. To set the stage of infection, to establish itself in the host’s defending environment, to cause the pathogenicity by overcoming the immune system and to escape out from any assailable host attack, this TB causing pathogen has developed a well-embodied system known as two-component system (TCS) that constitutes two proteins, universally designated as sensor protein and response regulator protein.

The basic function of these proteins is to sense environmental signals and respond accordingly. After interaction with suitable stimulating ligands, sensor protein, histidine kinase binds and hydrolyzes ATP, catalysing the auto-phosphorylation of a conserved Histidine residue and producing a high energy phosphoryl group. The phosphate is then transferred to the associated receiver protein known as response regulator at conserved Aspartic acid residue generating a high-energy acyl phosphate. Once phosphotransfer reaction has taken place, the response regulator gets activated, allowing it to carry out its specific function. In most of the cases, activated sensor kinase modulates the transcription of DNA at a specific binding site located in target genome at promoter region. The total effect is change in global gene expression that aids pathogen to respond in the initial signal sensed by histidine kinase. There are eleven such TCS in the pathogen. The primary task of such system is to control the expression of specific genes at specific time in response to the environmental conditions hence contributing to the growth of pathogen inside host. Since each of the TCS is obligated with distinct function, they are involved in orchestrating most of the gene regulatory processes. Out of eleven, only eight TCS have been studied comprehensively letting others to be scavenged by further genomic analysis of Mt.

Interdisciplinary relevance : The systematic understanding of biological phenomena and demonstration of such microscopic processes have been subjected to a number of sophisticated experimental procedure in order to develop the deterministic or stochastic approaches that are skilled in unfolding real molecular system. Biological modeling and simulation are among those of biochemical annotating methodologies using wet lab data and  understanding the scenario of real biological mechanism. Systems biology opens a new area to analyse the raw data generated through wet lab experimentations by various modes of characterization and evaluation by mathematical modeling, simulations & network analyses as the sole implications into any biological issue. Two-component systems for their critical contributions in bacterial pathogenicity have provided us with new concepts for comprehending molecular mechanism which are yet to be explored. Limitations have been raised for it’s behaviour and activation so far as the exact regulatory mechanism is concerned. Application of mathematical model and simulation over the regulatory behaviour would testify the real global association of TCS with entire genomic expression showing how this pathogen becomes so potentially virulent? Another important question that can be raised is at what level of gene activation the pathogenicity is rampant making host unimmunized? The scavenging initiative of all two-component systems would bring the molecular biology, chemistry, mathematics and network biology together to unfold the gene regulatory scenario of Mycobacterium tuberculosis in an exclusive manner.

 

Professionally a teacher and passionately a researcher, Fozail is a Bioinformatician. He has worked on Molecular Evolution as a UGC project fellow in Dyal Singh College, University of Delhi. His area of research include Systems Biology, Biological Networking, Mathematical Modelling etc.

Advertisement
3 Comments

3 Comments

  1. Prashant Pant

    December 14, 2015 at 1:49 am

    Thank You Fozail for the very informative and interesting article

  2. Fozail Ahmad

    December 14, 2015 at 3:57 pm

    your welcome Sir

  3. Fozail Ahmad

    December 14, 2015 at 3:57 pm

You must be logged in to post a comment Login

Leave a Reply

Algorithms

Systems pharmacology and drug development

Published

on

Systems pharmacology is an emerging area in the field of medicinal chemistry and pharmacology which utilizes systems network to understand drug action at the organ and organism level. It applies the computational and experimental systems biology approaches to pharmacology, which includes network analyzes at multiple biological organization levels facilitating the understanding of both therapeutic and adverse effects of the drugs. Nearly a decade ago, the term systems pharmacology was used to define the drug action in a specific organ system such as reproductive pharmacology [1], but to date, it has been expanded to different organ and organism levels [2]. (more…)

Continue Reading

Systems Biology

MOTIF: Functional Unit of An Interaction Network

Published

on

In a network, integration of elements and interacting components enables identification of conserved modules and
motifs. The topological analysis, however, reveals much about the nature and functions of a network and provides sufficient statistics for any further study. (more…)

Continue Reading

Systems Biology

Network Biology: Get Together of Macromolecules

Published

on

A network is a group of two more than two interacting components. The complex biological systems can be represented as computable networks that provide a unique way of analyzing the complex underlying mechanisms. (more…)

Continue Reading

LATEST ISSUE

ADVERT