Connect with us

Systems Biology

Two Components System: Potential Drug Target in Mycobacterium tuberculosis

Published

on

The genomic complexity and unknown functions of proteins/genes in Mycobacterium tuberculosis (Mt) has triggered an in-depth study of the entire genome to explore factors responsible for influencing Mt’s behaviour at molecular level. To set the stage of infection, to establish itself in the host’s defending environment, to cause the pathogenicity by overcoming the immune system and to escape out from any assailable host attack, this TB causing pathogen has developed a well-embodied system known as two-component system (TCS) that constitutes two proteins, universally designated as sensor protein and response regulator protein.

The basic function of these proteins is to sense environmental signals and respond accordingly. After interaction with suitable stimulating ligands, sensor protein, histidine kinase binds and hydrolyzes ATP, catalysing the auto-phosphorylation of a conserved Histidine residue and producing a high energy phosphoryl group. The phosphate is then transferred to the associated receiver protein known as response regulator at conserved Aspartic acid residue generating a high-energy acyl phosphate. Once phosphotransfer reaction has taken place, the response regulator gets activated, allowing it to carry out its specific function. In most of the cases, activated sensor kinase modulates the transcription of DNA at a specific binding site located in target genome at promoter region. The total effect is change in global gene expression that aids pathogen to respond in the initial signal sensed by histidine kinase. There are eleven such TCS in the pathogen. The primary task of such system is to control the expression of specific genes at specific time in response to the environmental conditions hence contributing to the growth of pathogen inside host. Since each of the TCS is obligated with distinct function, they are involved in orchestrating most of the gene regulatory processes. Out of eleven, only eight TCS have been studied comprehensively letting others to be scavenged by further genomic analysis of Mt.

Interdisciplinary relevance : The systematic understanding of biological phenomena and demonstration of such microscopic processes have been subjected to a number of sophisticated experimental procedure in order to develop the deterministic or stochastic approaches that are skilled in unfolding real molecular system. Biological modeling and simulation are among those of biochemical annotating methodologies using wet lab data and  understanding the scenario of real biological mechanism. Systems biology opens a new area to analyse the raw data generated through wet lab experimentations by various modes of characterization and evaluation by mathematical modeling, simulations & network analyses as the sole implications into any biological issue. Two-component systems for their critical contributions in bacterial pathogenicity have provided us with new concepts for comprehending molecular mechanism which are yet to be explored. Limitations have been raised for it’s behaviour and activation so far as the exact regulatory mechanism is concerned. Application of mathematical model and simulation over the regulatory behaviour would testify the real global association of TCS with entire genomic expression showing how this pathogen becomes so potentially virulent? Another important question that can be raised is at what level of gene activation the pathogenicity is rampant making host unimmunized? The scavenging initiative of all two-component systems would bring the molecular biology, chemistry, mathematics and network biology together to unfold the gene regulatory scenario of Mycobacterium tuberculosis in an exclusive manner.

 

Professionally a teacher and passionately a researcher, Fozail is a Bioinformatician. He has worked on Molecular Evolution as a UGC project fellow in Dyal Singh College, University of Delhi. His area of research include Systems Biology, Biological Networking, Mathematical Modelling etc.

Advertisement
3 Comments

3 Comments

  1. Prashant Pant

    December 14, 2015 at 1:49 am

    Thank You Fozail for the very informative and interesting article

  2. Fozail Ahmad

    December 14, 2015 at 3:57 pm

    your welcome Sir

  3. Fozail Ahmad

    December 14, 2015 at 3:57 pm

You must be logged in to post a comment Login

Leave a Reply

Algorithms

Systems pharmacology and drug development

Dr. Muniba Faiza

Published

on

Systems pharmacology is an emerging area in the field of medicinal chemistry and pharmacology which utilizes systems network to understand drug action at the organ and organism level. It applies the computational and experimental systems biology approaches to pharmacology, which includes network analyzes at multiple biological organization levels facilitating the understanding of both therapeutic and adverse effects of the drugs. Nearly a decade ago, the term systems pharmacology was used to define the drug action in a specific organ system such as reproductive pharmacology [1], but to date, it has been expanded to different organ and organism levels [2]. (more…)

Continue Reading

Systems Biology

MOTIF: Functional Unit of An Interaction Network

Published

on

In a network, integration of elements and interacting components enables identification of conserved modules and
motifs. The topological analysis, however, reveals much about the nature and functions of a network and provides sufficient statistics for any further study. (more…)

Continue Reading

Systems Biology

Network Biology: Get Together of Macromolecules

Published

on

A network is a group of two more than two interacting components. The complex biological systems can be represented as computable networks that provide a unique way of analyzing the complex underlying mechanisms. (more…)

Continue Reading

Systems Biology

Explore Tuberculosis: A Systems Biology Approach

Published

on

Systems biology is not sufficient to full fill the requirement of molecular understanding of any organism at any level. It seeks to contribute multiple approaches and fields to resolve a particular issue arisen from ongoing work. In this article you will find a combinatorial approach of systems biology i.e. molecular, cellular and network biology to understand how tuberculosis is developed and how pathogen succeeds in fighting with host immune systems. A well developed mathematical model, on PhoP-PhoR two component system, is also presented and explained to demonstrate the mode of molecular regulation by pathogen. (more…)

Continue Reading

Systems Biology

Introduction to Mathematical Modelling (Last Part)

Published

on

In the previous section, mathematical modeling was exemplified by metabolic process and its biochemical regulation. It could also be done by signalling pathways and genetic regulatory process. At all cellular phase, one observe changing mode of a cell with effect from environmental factors. It is quite difficult to maintain cellular functions and reach to steady state. Thus, one needs to fix a range of parameters for all molecular reactions while going for mathematical modeling.

(more…)

Continue Reading

Systems Biology

Introduction to Mathematical Modelling Part-3

Published

on

Derivation of Mathematical Equations for Understanding Systems Behaviour:

Depending upon the nature of biological process, it is essential to understand different modeling approach as numbers of methods have been used for different biological systems. Functionally, most of the cellular processes are dynamic that change with environmental change such that the signaling or regulation for specific genes when cell is exposed to an extraordinary medium.  In order to describe such time-dependent phenomena it is necessary to choose mathematical equations that can capture these dynamic effects. In other biological systems where cellular products/molecules don’t change over time i.e., concentration remains same, it is not necessary to describe details of underlying dynamics. For modeling the systems behavior, suitable methods have been developed. Among them are two methods, commonly used in modeling of metabolic process, modeling of signaling and regulatory pathways.

(more…)

Continue Reading

Cancer

Cancer: From the Eyes of Mathematical/Systems Biology

Published

on

The month of November has just arrived with its generic glimpse of winter. We welcome this month with an evergreen and hot topic of cancer research. This time we intend to introduce you to an old research topic with a new vision…..

Cancer being an ailment with no remedy of full confidence has been pursued as a career by a lot of researchers. A cell biologist says it is an uncontrolled proliferation (increase in number by division and growth) of cells, molecular biologists call it a mutant variety of some biomolecules forcing a cell to commit such an uncontrolled cell division cycle. But, how does a Systems Biologist see such kind of a problem? Let us try to pursue it in a different way.

Proteins if are not assigned some name based on their function or structure, scientists mark them according to their molecular weight, e.g. p53, p200, p19 etc. Scientists have proven an abnormally high expression of p53 protein in Cancerous cells/tissues. p53 protein is actually the reason behind those other proteins which regulate the cell cycle and makes it to divide in to two as a normal scenario, p53 also helps in the manufacture of its inhibitor named Mdm2 protein. In any case of mutation in p53, that leads the failure of abnormality recognition by p53, doesn’t lead to increase in p53 and consequently Mdm2, p21 and other p53 regulated proteins. And thus, the division of abnormal cells continues indefinitely and causes Cancer.

Chemical reactions involved

From a Mathematical Biology perspective, systems biologists form some ordinary differential equations that look like a mathematical formula. These mathematical formulae are actually nothing else than the representative of chemical reactions and their combinations occurring inside a cell. As in our previous blogs (by Fozail Ahmad), we have mentioned about how to combine the chemical reactions in a shape of Ordinary Differential Equations (ODEs) and about how we follow Zero-Order chemical kinetics (reaction rate doesn’t depend on any participating chemical), First-Order chemical kinetics (reaction rate depends on only one participating chemical) and Second-Order chemical kinetics (reaction rate depends on two or more participating chemicals) to form the equations. In addition to that, I would like to mention that there are some reactions which occur with the help of some biomolecular machineries. These machines (enzymes) just help the reactions to occur, but do not take part in it themselves and thus affect the reaction in a different form of kinetics as described by the combined work of German Scientist of Biochemistry Leonor Michaelis and Canadian Scientist of Physics Maud Menten in 1913.Connected Chemical reactions

So, in a normal cell, when p53 senses the danger and signals the Cell by increasing p21 to combine with PCNA (Proliferating Cell Nuclear Antigen – An enzyme that helps in cell division) it stops the cell division. This type of cell cycle division has been shown in one of the diagrams mentioned below, while for the mutated case of p53 where it can not sense the cellular damage and thus divides normally is also shown in one of the images above.

Stages of Mathematical Modeling

We have also mentioned a combined picture, which shows a referral of how different stages of Mathematical Biology looks like. These figures are in special contrast to Cancer cells and normal cells.

 

Reference: Alam MJ, Kumar S, Singh V, Singh RKB (2015) Bifurcation in Cell Cycle Dynamics Regulated by p53. PLoS ONE 10(6): e0129620. doi:10.1371/journal.pone.0129620

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129620

Continue Reading

Systems Biology

Introduction to mathematical modelling – Part 2

Published

on

Gathering of Dynamic/Kinetic information

In the previous section you might have noticed that modelling biochemical process requires calibrated set of fine parameters which fit into and across the set of chemical/reactant species (gene/protein/molecule) involved in the process.

(more…)

Continue Reading

Systems Biology

Basics of Mathematical Modelling – Part 1

Published

on

Biochemical processes are simply complex, and their apparent feature does not easily allow us to investigate what exactly system means. Moreover, most of the biochemical processes obey nonlinear reaction kinetics. That is, amount of reactant (Protein/RNA/DNA/) is not directly proportional to its product. (more…)

Continue Reading

Software

BioMiner & Personalized Medicine: A new perspective

Dr. Muniba Faiza

Published

on

Personalized medicines have become a very important part of the medicine world now a days. They are also known as ‘Individualized Medicines’. Personalized medicines allow a doctor to prescribe more specific and efficient medicines to a particular patient. This concept has created many more opportunities and aspects in the medicine world. (more…)

Continue Reading

Cancer

Tumor progression prediction by variability based expression signatures

Dr. Muniba Faiza

Published

on

Cancer has become a very common disease now a days, but the main reason of causing this is unknown up till now. Various reasons have been given and recent research says that improper sleeping patterns may also lead to cancer. Like cause of cancer is difficult to predict, similarly, its progression and prognosis is also very difficult. Despite of many advances in cancer treatment, early detection is still very difficult. (more…)

Continue Reading

LATEST ISSUE

ADVERT