Bioinformatics ReviewBioinformatics Review
Notification Show More
Font ResizerAa
  •  Home
  • Docking
  • MD Simulation
  • Tools
  • More Topics
    • Softwares
    • Sequence Analysis
    • Algorithms
    • Bioinformatics Programming
    • Bioinformatics Research Updates
    • Drug Discovery
    • Phylogenetics
    • Structural Bioinformatics
    • Editorials
    • Tips & Tricks
    • Bioinformatics News
    • Featured
    • Genomics
    • Bioinformatics Infographics
  • Community
    • BiR-Research Group
    • Community Q&A
    • Ask a question
    • Join Telegram Channel
    • Join Facebook Group
    • Join Reddit Group
    • Subscription Options
    • Become a Patron
    • Write for us
  • About Us
    • About BiR
    • BiR Scope
    • The Team
    • Guidelines for Research Collaboration
    • Feedback
    • Contact Us
    • Recent @ BiR
  • Subscription
  • Account
    • Visit Dashboard
    • Login
Font ResizerAa
Bioinformatics ReviewBioinformatics Review
Search
Have an existing account? Sign In
Follow US
Bioinformatics NewsProteomics

Disulphide Connectivity in Protein Tertiary Structure Prediction

Dr. Muniba Faiza
Last updated: December 17, 2015 11:22 pm
Dr. Muniba Faiza
Share
3 Min Read
SHARE

As the approach towards the protein structure prediction has increased and has been successful in most of the cases but still also a big challenge. To handle this situation, the Protein Structure prediction is divided in to separate sub classes to get the information about the whole system (i.e.,protein structure). One of these sub classes is Disulphide Connectivity. Under this, the disulphide bonds formed between non-adjacent Cysteine residues are identified that would be cross-linked from other possible residues.

Since the disulphide bridges/bonds plays an important role in the folding process, stability and function of a protein, therefore, the prediction of disulfide bonds connectivity can help in prediction of protein structure. Disulphide Connectivity can be studied in two steps:  first, by disulfide bonding state prediction and secondly, by disulphide connectivity prediction (DCP). The first approach classifies the cysteines bonded to another cysteines or any free cysteine according to their molecular states. DCP identifies the different pairs of cysteines that are bonded in a protein sequence. To perform these tasks,

various predictors are available that are mainly based on Neural Networks (NN) and Support Vector Machines (SVMs), and other predictive methods.

An Artificial Neural Network is a computing system of interconnected elements where some external inputs are applied and the information is processed by the dynamic responses given by the system.  ANN provides a likelihood of forming a disulphide bond for each cysteine pair. Several algorithms are applied such as Gabow’s algorithm to implement NN in protein structure prediction.  SVMs are the machine learning tool to predict tertiary structure from the primary sequence of proteins. This approach uses the Edmond-Gabow algorithm and PSSMs.

After performing these operations, to validate the accuracy of predicted connectivity patterns two parameters : Rb & Qb.  Rb is the ratio of the number of correctly predicted bonds to the total number of disulphide bonds (Nb) in test proteins. Qb is the ratio of  the number of proteins whose connectivity patterns are correctly predicted (Nprot) to the total number of proteins (Nt) in the test set.
For further reading, click here.

Note:

An exhaustive list of references for this article is available with the author and is available on personal request, for more details write tomuniba@bioinformaticsreview.com.

Share This Article
Facebook Copy Link Print
ByDr. Muniba Faiza
Follow:
Dr. Muniba is a Bioinformatician based in New Delhi, India. She has completed her PhD in Bioinformatics from South China University of Technology, Guangzhou, China. She has cutting edge knowledge of bioinformatics tools, algorithms, and drug designing. When she is not reading she is found enjoying with the family. Know more about Muniba
Leave a Comment

Leave a Reply Cancel reply

You must be logged in to post a comment.

ai tools vs traditional tools in bioinformatics
AI Tools vs Traditional Tools in Bioinformatics- Which one to select?
Algorithms Artificial Intelligence Machine Learning Software Tools
AI vs Physics in Molecular Docking
AI vs Physics in Molecular Docking: Towards Faster and More Accurate Pose Prediction
Artificial Intelligence Drug Discovery Machine Learning
10 years of Bioinformatics Review: From a Blog to a Bioinformatics Knowledge Hub!
Editorial
Starting in Bioinformatics? Do This First!
Starting in Bioinformatics? Do This First!
Tips & Tricks

You Might Also Like

Bioinformatics News

Perspective: Small molecules as players in targeted therapies

June 12, 2020
monthly-october updates bioinformatics
Bioinformatics NewsBioinformatics Research Updates

This Month in Bioinformatics- Research Updates of October 2020

November 2, 2020
Bioinformatics Research Updates- August 2020
Bioinformatics News

This Month in Bioinformatics: Research Updates of August 2020

September 1, 2020
Bioinformatics NewsUpcoming Conferences

2016 NextGen Genomics, Biology, Bioinformatics and Technologies (NGBT) Conference

March 21, 2016
Copyright 2024 IQL Technologies
  • Journal
  • Customer Support
  • Contact Us
  • FAQs
  • Terms of Use
  • Privacy Policy
  • Cookie Policy
  • Sitemap
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?

Not a member? Sign Up