MD Simulation
Tutorial: MD simulation with mixed solvents using GROMACS
In this tutorial, we are performing MD simulation in mixed solvents of methanol and water using GROMACS [1,2]. You can follow our previous articles for MD simulation of a simple protein and a protein-ligand complex.
Download a structure of your protein of interest from PDB. In this tutorial, we are going to simulate insulin (PDB ID: 1ZNI).
1. Preparing protein file
Remove the other chains and hetatoms including the water molecules (HOH) from the protein file. You can use an editor such as vim, notepadqq in Ubuntu, and notepad++ in Windows. You can also use the following command to remove the hetatoms:
$ grep -v HETATM 1zni.pdb > 1zni_new.pdb
2. Converting PDB to gmx and generating topology
pdb2gmx module generates the topology of proteins. Make sure the protein file consists of protein atoms only otherwise it will be giving errors.
$ gmx pdb2gmx -f 1zni_new.pdb -o 1zni_processed.gro -water spce
It will ask to select the force field that contains information to be written to the topology. This an important step, therefore, select an appropriate field relevant to your study. In this tutorial, we will be using the OPLS all-atom force field, so type 15 in the terminal.
Now, you have three new files: 1zni_processed.gro, posre.itp, and topol.top.
For details on these commands/steps, please read our previous articles mentioned above.
3. Defining box
In order to build a system, we need to define a box of proper dimensions for the protein. You can choose different types of boxes but here we will be using a rhombic dodecahedron box as it can save the number of water molecules during the solvation of protein (discussed in the next step). editconf module will be used for defining the box.
$ gmx editconf -f 1zni_processed.gro -o 1zni_box.gro -c -d 3.0 -bt dodecahedron
Now, we have successfully defined the box around the protein. Let’s move on to the next step.
4. Solvating the protein
4.1. Fill with methanol
At first, we will fill the box with methanol. We are going to use the gmx insert-molecules module for adding methanol molecules to the box. For that, you need an itp file and gro file of methanol. Download methanol.itp and methanol.gro files. Determine how many molecules you have to add to the box according to the concentration and ratio to the water. Here, I am adding 30 molecules.
$ gmx insert-molecules -f 1zni_box.gro -ci methanol.gro -nmol 30 -try 20 -o 1zni_methanol_box.gro
4.1. Fill with water
To fill the rest of the box with water, you can either use the above gmx insert-molecules module or use gmx solvate as shown below. For the former, you will need another gro file for this solvent.
$ gmx solvate -cp 1zni_methanol_box.gro -cs spc216.gro -o 1zni_mixed_solvate.gro -p topol.top
Look at the input box files. First, we created a box around the protein, then filled it with methanol, and later with water.
Now open topol.top file in an editor and add the number of molecules of methanol in the [molecules] directive. Then, include methanol.itp file as shown below:
#include "oplsaa.ff/ions.itp"
#include "methanol.itp"
Save topol.top file.
In the next step, you might get some errors regarding the number of atoms being different in the topology file and gro file. Check your number of added solvent molecules (methanol+water).
Now, proceed with the rest of the simulation steps mentioned in the previous articles.
References
- Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25.
- Abraham, M. J., Van Der Spoel, D., Lindahl, E., & Hess, B. (2015). the GROMACS Development Team (2014) GROMACS User Manual Version 5.0. 4.
MD Simulation
List of widely used MD Simulation Analysis Tools.
Molecular Dynamics (MD) simulation analysis involves interpreting the vast amounts of data generated during the simulation of molecular systems. These analyses are necessary to study the physical movements of atoms and molecules, the stability of molecular conformations, reaction mechanisms, and thermodynamic properties, among other aspects. In this article, we will give a brief overview of some widely used MD simulation analysis tools.
Bioinformatics Programming
Free_Energy_Landscape-MD: Python package to create Free Energy Landscape using PCA from GROMACS.
In molecular dynamics (MD) simulations, a free energy landscape (FEL) serves as a crucial tool for understanding the behavior of molecules and biomolecules over time. It is difficult to understand and plot a meaningful FEL and then extract the time frames at which the plot shows minima. In this article, we introduce a new Python package (Free_Energy_Landscape-MD) to generate an FEL based on principal component analysis (PCA) from MD simulation done by GROMACS [1].
MD Simulation
[Tutorial] Installing VIAMD on Ubuntu (Linux).
Visual Interactive Analysis of Molecular Dynamics (VIAMD) is a tool that allows the interactive analysis of molecular dynamics simulations [1]. In this article, we are installing it on Ubuntu (Linux).
MD Simulation
Energy minimization and equilibration of simple protein using NAMD & VMD.
In this tutorial, we will perform energy minimization and equilibration of a simple protein using NAMD [1] & VMD [2]. We are using insulin (PDB ID: 2wfu) for this tutorial.
MD Simulation
Generating topology of molecule for AMBER forcefield for GROMACS.
In this article, we will generate the topology of a small molecule for AMBER forcefield to be used in MD simulation using GROMACS.
MD Simulation
How to visualize output plots of MD simulation (GROMACS)?
Visualizing plots of molecular dynamics simulation is easy once you have generated them. Previously, we provided a few articles on MD output analysis (check the Further Reading section). This article explains how you can easily visualize the plots generated from GROMACS output. (more…)
MD Simulation
How to solve ‘Could NOT find CUDA: Found unsuitable version “10.1”‘ error during GROMACS installation?
Compiling GROMACS [1] with GPU can be trivial. Previously, we have provided a few articles on the same. In this article, we will solve an error frequently occurring during GROMACS installation.
MD Simulation
How to calculate number of steps (nsteps) for MD simulation run?
While doing molecular dynamics (MD) simulation, it can be difficult to calculate the number of steps or nsteps for an MD run accurately. In this article, we will learn to calculate nsteps for an MD run. (more…)
MD Simulation
How to install GROMACS on Apple M1 (MacOS)?
We have provided a few articles on GROMACS installation on Ubuntu. In this article, we are going to install GROMACS [1] on Mac OS. (more…)
MD Simulation
How to take snapshots of structure at specific times in GROMACS?
It is important to see the behavior of protein during an MD simulation. This can be achieved by taking snapshots in the form of PDB format. In this article, we have provided a few commands that you can use to take snapshots of a complete system or protein during MD simulation. (more…)
MD Simulation
GROMACS: Uses & Applications
GROMACS stands for GROningen MAchine for Chemical Simulations [1]. It is a very popular and one of the most widely used open-source bioinformatics software. It is generally used for molecular dynamics simulation of macromolecules. In this article, we will explain its uses and applications in bioinformatics studies. (more…)
MD Simulation
Easy installation of GROMACS on Ubuntu 18.04 & 20.04
We have provided several articles on GROMACS [1] installation on Ubuntu including the easy installation method for GROMACS version 5.x.x. In this article, we will provide shell scripts to install the latest (2021 series) of GROMACS on Ubuntu 18.04 and 20.04. (more…)
MD Simulation
How to create an index file in GROMACS for MD simulation?
MD simulation is a tricky technique if you don’t understand what you are doing through various parameters and algorithms in GROMACS [1]. That may lead to several errors. In this article, we are going to create an index file for the protein groups in GROMACS to solve such errors. (more…)
MD Simulation
How to generate topology of small molecules & ligands for MD Simulation?
Generating the topology of small molecules/ligands is an important step in molecular dynamics (MD) Simulation. We explained it in previous articles as part of MD simulation tutorials. In this article, we will explain how can you generate the topology of ligands for MD simulation of complex or small molecules only. (more…)
MD Simulation
Tutorial: MD Simulation of small organic molecules using GROMACS
GROMACS [1] offers a vast range of functions when it comes to molecular dynamics simulation. Today, we are going to explore it for the simulation of small organic molecules. (more…)
MD Simulation
Tutorial: MD simulation output analysis of a complex using GROMACS
We have provided several tutorials on molecular dynamics (MD) simulation (please check further reading section). They include installation of simulation software, simulation of a simple protein, and a complex. In this article, we will analyze the GROMACS [1] output of MD simulation of a complex. (more…)
MD Simulation
How to submit MD simulation job on a cluster server using PBS script?
Molecular dynamics (MD) simulation is one of the most widely used methods in bioinformatics. It needs high computation time and therefore, performed on workstations and servers. It requires software to upload and download files to and from the server. In this article, we have explained how to submit MD simulation jobs on cluster computers using PBS scripts. (more…)
MD Simulation
Method-1: Installing GROMACS on Ubuntu with CUDA GPU Support
GROMACS [1] is one of the most popular software in bioinformatics for molecular dynamic (MD) studies of macromolecules. We have provided different tutorials regarding MD simulation using GROMACS including its installation on Ubuntu. In this article, we will install GROMACS with GPU acceleration. (more…)
MD Simulation
Installing GROMOS96 on Ubuntu
GROMOS96 is a well-known software package used for biomolecular simulations [1]. It can be used for the molecular dynamics simulation of protein, peptide, and protein-ligand complex as well. In this article, we will install GROMOS96 on Ubuntu. (more…)
MD Simulation
MD Simulation using GROMACS: Things to remember
Molecular dynamics (MD) simulation is considered amongst the important methods in bioinformatics. Installation of MD simulation software and execution of their commands is critical. It requires several parameters to be considered before performing simulations. A single mistake may result in impractical outputs. In this article, we will discuss such important things to remember during the MD simulation and installation and execution of its software (GROMACS) [1,2]. (more…)
You must be logged in to post a comment Login